
Tree-Based Methods

Szu-Chi Chung

Department of Applied Mathematics, National Sun Yat-sen University

Tree-based Methods

 Here we describe tree-based methods for regression and classification

 These involve firstly stratifying or segmenting the predictor space into a number of simple

regions

 And use the mean or the mode response value for the training observations in the region to

which it belongs for inference

 Since the set of splitting rules used to segment the predictor space can be

summarized in a tree, these types of approaches are known as decision-tree

methods

2

Pros and Cons

 Tree-based methods are simple and useful for interpretation

 However they typically are not competitive with the best supervised learning

approaches in terms of prediction accuracy

 Hence we also discuss bagging, random forests, boosting and Bayesian

additive regression trees. These methods grow multiple trees which are then

combined to yield a single consensus prediction

 Combining a large number of trees can often result in dramatic improvements

in prediction accuracy, at the expense of some loss interpretation

3

Baseball salary data: how would you stratify it?

 Salary is color-coded from low (blue, green) to high (yellow, red)

4

Decision tree for these data

5

Details of previous figure

 For the Hitters data, a regression tree for predicting the log salary of a baseball

player, based on the number of years that he has played in the major leagues

and the number of hits that he made in the previous year

 At a given internal node, the label (of the form 𝑋𝑗 < 𝑡𝑘) indicates the left-hand

branch emanating from that split, and the right-hand branch corresponds to

𝑋𝑗 ≥ 𝑡𝑘. For instance, the split at the top of the tree results in two large

branches. The left-hand branch corresponds to Years< 4.5, and the right-hand

branch corresponds to Years ≥ 4.5

 The tree has two internal nodes and three terminal nodes, or leaves. The

number in each leaf is the mean of the response for the observations that fall

there

6

Results

 Overall, the tree stratifies or segments the players into three regions of

predictor space: 𝑅1 = { 𝑋 | 𝑌𝑒𝑎𝑟𝑠 < 4.5 }, 𝑅2 = { 𝑋 | 𝑌𝑒𝑎𝑟𝑠 ≥ 4.5, 𝐻𝑖𝑡𝑠 <
117.5 } , and 𝑅3 = { 𝑋 |𝑌𝑒𝑎𝑟𝑠 ≥ 4.5, 𝐻𝑖𝑡𝑠 ≥ 117.5 }

7

Terminology for Trees

 In keeping with the tree analogy, the regions 𝑅1, 𝑅2, and 𝑅3 are known as

terminal nodes

 Decision trees are typically drawn upside down, in the sense that the leaves are

at the bottom of the tree

 The points along the tree where the predictor space is split are referred to as

internal nodes

 In the hitters tree, the two internal nodes are indicated by the text 𝑌𝑒𝑎𝑟𝑠 <
4.5 and 𝐻𝑖𝑡𝑠 < 117.5

8

Interpretation of Results

 Years is the most important factor in determining Salary, and players with less

experience earn lower salaries than more experienced players

 Given that a player is less experienced, the number of Hits that he made in the

previous year seems to play little role in his Salary

 But among players who have been in the major leagues for five or more years,

the number of Hits made in the previous year does affect Salary, and players

who made more Hits last year tend to have higher salaries

 Surely an over-simplification, but compared to a regression model, it is easy to

display, interpret and explain

9

Details of the tree-building process

1. We divide the predictor space — that is, the set of possible values for

𝑋1, 𝑋2, … , 𝑋𝑝— into 𝐽 distinct and non-overlapping regions, 𝑅1, 𝑅2, … , 𝑅𝐽

2. For every observation that falls into the region 𝑅𝑗 , we make the same

prediction, which is simply the mean of the response values for the training

observations in 𝑅𝑗

10

https://dafriedman97.github.io/mlbook/content/c5/s1/regression_tree.html

More details of the tree-building process

 In theory, the regions could have any shape. However, we choose to divide the

predictor space into high-dimensional rectangles, or boxes, for simplicity and

for ease of interpretation of the resulting predictive model

 The goal is to find boxes 𝑅1, 𝑅2, … , 𝑅𝐽 that minimize the RSS, given by

𝑗=1

𝐽

𝑖∈𝑅𝑗

(𝑦𝑖 − ො𝑦𝑅𝑗)
2

ො𝑦𝑅𝑗 is the mean response for the training observations within the 𝑗th box

11

More details of the tree-building process

 Unfortunately, it is computationally infeasible to consider every possible

partition of the feature space into 𝐽 boxes

 For this reason, we take a top-down, greedy approach that is known as

recursive binary splitting

 The approach is top-down because it begins at the top of the tree and then

successively splits the predictor space; each split is indicated via two new

branches further down on the tree

 It is greedy because at each step of the tree-building process, the best split is

made at that particular step, rather than looking ahead and picking a split that

will lead to a better tree in some future step

12

Details— Continued

 We first select the predictor 𝑋𝑗 and the cutpoint 𝑠 such that splitting the

predictor space into the regions {𝑋|𝑋𝑗 < 𝑠 } and {𝑋|𝑋𝑗 ≥ 𝑠 } leads to the

greatest possible reduction in RSS (choosing 𝑗 and 𝑠 to minimize)

𝑖:𝑥𝑖𝜖𝑅1(𝑗,𝑠)

(𝑦𝑖 − ො𝑦𝑅1)
2+

𝑖:𝑥𝑖𝜖𝑅2(𝑗,𝑠)

(𝑦𝑖 − ො𝑦𝑅2)
2

 Next, we looking for the best predictor and best cutpoint in order to split the

data further so as to minimize the RSS within each of the resulting regions

 Instead of splitting the entire predictor space, we split one of the two previously identified

regions. We now have three regions

 Again, we look to split one of these three regions further, so as to minimize the RSS. The

process continues until a stopping criterion is reached; for instance, we may continue until

no region contains more than five observations

13

Predictions

 We predict the response for

a given test observation

using the mean of the

training observations in the

region to which that test

observation belongs

 A five-region example of

this approach is shown

14

Details of previous figure

 Top Left: A partition of two-dimensional feature space that could not result

from recursive binary splitting

 Top Right: The output of recursive binary splitting on a two-dimensional

example

 Bottom Left: A tree corresponding to the partition in the top right panel

 Bottom Right: A perspective plot of the prediction surface corresponding to

that tree

15

Regulization

 The process described above may produce good predictions on the training set,

but is likely to overfit the data, leading to poor test set performance

 A simple way to limit a tree’s size is to directly regulate its depth, the size of its

terminal nodes (training observation belongs to them), or both

16

Pruning a tree

 A smaller tree with fewer splits (that is, fewer regions 𝑅1, 𝑅2, … , 𝑅𝐽) might lead

to lower variance and better interpretation at the cost of a little bias

 One possible alternative to the process described above is to grow the tree only so long as

the decrease in the RSS due to each split exceeds some (high) threshold

 This strategy will result in smaller trees, but is too short-sighted: a seemingly worthless

split early on in the tree might be followed by a very good split — that is, a split that leads

to a large reduction in RSS later on

17

Pruning a tree— continued

 A better strategy is to grow a very large tree 𝑇0, and then prune it back in order

to obtain a subtree

 Cost complexity pruning — also known as weakest link pruning — is used to

do this

 We consider a sequence of trees indexed by a nonnegative tuning parameter 𝛼.

For each value of α there corresponds a subtree 𝑇 ⊂ 𝑇0 such that

𝑚=1

|𝑇|

𝑖:𝑥𝑖∈𝑅𝑚

(𝑦𝑖 − ො𝑦𝑅𝑚)
2 + 𝛼|𝑇|

is as small as possible. Here |𝑇| indicates the number of terminal nodes of the tree 𝑇, 𝑅𝑚 is

the rectangle (i.e. the subset of predictor space) corresponding to the 𝑚th terminal node, and

ො𝑦𝑅𝑚 is the mean of the training observations in 𝑅𝑚

18

Choosing the best subtree

 The tuning parameter α controls a trade-off between the subtree’s complexity

and its fit to the training data

 Note that similar formulation was used in order to control the complexity

of a linear model when we discuss lasso

 It turns out that as we increase α from zero in (8.4), branches get pruned from

the tree in a nested and predictable fashion!

 We select an optimal value ො𝛼 using cross-validation

 We then return to the full data set and obtain the subtree corresponding to ො𝛼

19

20

Baseball example continued

 First, we randomly divided the data set in half, yielding 132 observations in the

training set and 131 observations in the test set

 We then built a large regression tree on the training data and varied 𝛼 in order

to create subtrees with different numbers of terminal nodes

 Finally, we performed six-fold cross-validation in order to estimate the cross-

validated MSE of the trees as a function of 𝛼

21

Baseball example continued

22

Baseball example continued

23

Classification Trees

 Very similar to a regression tree, except that it is used to predict a qualitative

response rather than a quantitative one

 For a classification tree, we predict that each observation belongs to the most

commonly occurring class of training observations in the region to which it

belongs

 Just as in the regression setting, we use recursive binary splitting to grow a

classification tree

 In the classification setting, RSS cannot be used as a criterion for making the

binary splits

24

https://dafriedman97.github.io/mlbook/content/c5/s1/classification_tree.html

Details of classification trees

 A natural alternative to RSS is the classification error rate. In our case, this is

simply the fraction of the training observations in that region that do not

belong to the most common class
𝐸 = 1 −max

𝑘
(Ƹ𝑝𝑚𝑘)

Here Ƹ𝑝𝑚𝑘 represents the proportion of training observations in the 𝑚th region that are from

the 𝑘th class

 However classification error is not sufficiently sensitive for tree-growing, and

in practice two other measures are preferable

25

Gini index and Deviance

 The Gini index is defined by

𝐺 =

𝑖=1

𝐾

Ƹ𝑝𝑚𝑘(1 − Ƹ𝑝𝑚𝑘)

 A measure of total variance across the 𝐾 classes. The Gini index takes on a small value if

all of the Ƹ𝑝𝑚𝑘’s are close to zero or one

 For this reason the Gini index is referred to as a measure of node purity — a small value

indicates that a node contains predominantly observations from a single class

 An alternative to the Gini index is cross-entropy, given by

𝐷 = −

𝑘=1

𝐾

Ƹ𝑝𝑚𝑘 log Ƹ𝑝𝑚𝑘

 It turns out that the Gini index and the cross-entropy are very similar

numerically (differentiable)
26

Example: heart data

 These data contain a binary outcome HD for 303 patients who presented with

chest pain

 An outcome value of Yes indicates the presence of heart disease based on an

angiographic test, while No means no heart disease

 There are 13 predictors including Age, Sex, Chol (a cholesterol measurement),

and other heart and lung function measurements

 Cross-validation yields a tree with six terminal nodes. See next figure

27

 There are some qualitative predictors

 Some of the splits yield two terminal nodes

that have the same predicted value

 Though the split 𝑅𝑒𝑠𝑡𝐸𝐶𝐺 < 1 does not reduce the

classification error, it improves the Gini index and

the entropy, which are more sensitive to node purity

(weighted by the observation in each subtree)

28

https://dafriedman97.github.io/mlbook/content/c5/s1/regression_tree.html#making-splits

Trees Versus Linear Models

 Regression tree assume a model

of a form

𝑓 𝑋 =

𝑚=1

𝑀

𝑐𝑚1(𝑋∈𝑅𝑚)

 Top Row: True linear boundary;

Bottom row: true non-linear

boundary

 Left column: linear model;

Right column: tree-based

model

29

Advantages and Disadvantages of Trees

 Pros

 Trees are very easy to explain to people. In fact, they are even easier to explain than linear

regression!

 Some people believe that decision trees more closely mirror human decision-making than

do the regression and classification approaches seen in previous chapters

 Trees can be displayed graphically, and are easily interpreted even by a non-expert

(especially if they are small)

 Trees can easily handle qualitative predictors without the need to create dummy variables

 Cons

 Unfortunately, trees generally do not have the same level of predictive accuracy as some of

the other regression and classification approaches seen in this book

 However, by aggregating many decision trees, the predictive performance of

trees can be substantially improved. We introduce these concepts next
30

https://catboost.ai/en/docs/concepts/algorithm-main-stages_cat-to-numberic

Ensemble method - Bagging

 An ensemble method is an approach that combines many simple “building

block” models in order to obtain a single and potentially very powerful model.

These simple building block models are sometimes known as weak learners,

since they may lead to mediocre predictions on their own

 Bootstrap aggregation, or bagging, is a general-purpose procedure for reducing

the variance of a statistical learning method; we introduce it here because it is

particularly useful and frequently used in the context of decision trees

 Recall that given a set of 𝑛 independent observations 𝑍1, … , 𝑍𝑛, each with

variance 𝜎2, the variance of the mean ҧ𝑍 of the observations is given by 𝜎2/𝑛

 In other words, averaging a set of observations reduces variance. Of course,

this is not practical because we generally do not have access to multiple

training sets

31

https://dafriedman97.github.io/mlbook/content/c6/s1/bagging.html

Bagging— continued

 Instead, we can bootstrap, by taking repeated samples from the (single) training

data set

 In this approach we generate 𝐵 different bootstrapped training data sets. We

then train our method on the 𝑏th bootstrapped training set in order to get
መ𝑓∗𝑏(𝑥), the prediction at a point 𝑥. We then average all the predictions to

obtain

መ𝑓𝑏𝑎𝑔 𝑥 =
1

𝐵

𝑏=1

𝐵

መ𝑓∗𝑏 𝑥

 This is called bagging

32

Bagging classification trees

 The above prescription applied to regression trees

 These trees are grown deep, and are not pruned. Hence each individual tree has high

variance, but low bias

 For classification trees: for each test observation, we record the class predicted

by each of the 𝐵 trees, and take a majority vote: the overall prediction is the

most commonly occurring class among the 𝐵 predictions

33

Bagging the heart data

34

Details of previous figure

 Bagging and random forest results for the Heart data.

 The test error (black and orange) is shown as a function of 𝐵, the number of bootstrapped

training sets used

 Random forests were applied with 𝑚 = 𝑝

 The dashed line indicates the test error resulting from a single classification tree

 The green and blue traces show the OOB error, which in this case is considerably lower

35

Out-of-Bag Error Estimation

 It turns out that there is a very straightforward way to estimate the test error of

a bagged model

 Recall that the key to bagging is that trees are repeatedly fit to bootstrapped

subsets of the observations. One can show that on average, each bagged tree

makes use of around two-thirds of the observations

 The remaining one-third of the observations not used to fit a given bagged tree

are referred to as the out-of-bag (OOB) observations

 We can predict the response for the 𝑖th observation using each of the trees in

which that observation was OOB. This will yield around 𝐵/3 predictions for

the 𝑖th observation, which we average (or vote)

 This estimate is essentially the LOO cross-validation error for bagging, if 𝐵 is

large
36

Ensemble method - Random Forests

 Random forests provide an improvement over bagged trees by way of a small

tweak that decorrelates the trees. This reduces the variance when we average the

trees

 As in bagging, we build a number of decision trees on bootstrapped training samples

 But when building these decision trees, each time a split in a tree is considered, a random

selection of 𝑚 predictors is chosen as split candidates from the full set of 𝑝 predictors

 The split is allowed to use only one of those 𝑚 predictors

 A fresh selection of 𝑚 predictors is taken at each split, and typically we choose 𝑚 ≈ 𝑝 —

that is, the number of predictors considered at each split is approximately equal to the square

root of the total number of predictors (4 out of the 13 for the Heart data)

37

https://dafriedman97.github.io/mlbook/content/c6/s1/random_forests.html

Ensemble method - Random Forests

 Suppose that there is one very strong predictor in the data set, along with

a number of other moderately strong predictors. Then in the collection of

bagged trees, most or all of the trees will use this strong predictor in the

top split

 Consequently, all of the bagged trees will look quite similar to each other

 Averaging many highly correlated quantities does not lead to as large of a reduction in

variance as averaging many uncorrelated quantities

 Random forests overcome this problem by forcing each split to consider only a subset

of the predictors

 Using a small value of m in building a random forest will typically be helpful when we

have a large number of correlated predictors

38

https://dafriedman97.github.io/mlbook/content/c6/s1/random_forests.html

Example: gene expression data

 We applied random forests to a high-dimensional biological data set consisting of

expression measurements of 4,718 genes measured on tissue samples from 349

patients

 There are around 20,000 genes in humans, and individual genes have different levels

of activity, or expression, in particular cells, tissues, and biological conditions

 Each of the patient samples has a qualitative label with 15 different levels: either

normal or one of 14 different types of cancer

 We use random forests to predict cancer type based on the 500 genes that have the

largest variance in the training set

 We randomly divided the observations into a training and a test set, and applied

random forests to the training set for three different values of the number of splitting

variables 𝑚

39

Results: gene expression data

 As with bagging, random forests will not overfit if we increase 𝐵, so in

practice we use a value of 𝐵 sufficiently large for the error rate to have

settled down

40

Details of previous figure

 Results from random forests for the fifteen-class gene expression data set with

𝑝 = 500 predictors

 The test error is displayed as a function of the number of trees. Each colored

line corresponds to a different value of 𝑚, the number of predictors available

for splitting at each interior tree node

 Random forests (𝑚 < 𝑝) lead to a slight improvement over bagging (𝑚 =
𝑝). A single classification tree has an error rate of 45.7%

41

Ensemble method - Boosting

 Like bagging, boosting is a general approach that can be applied to many

statistical learning methods for regression or classification

 Recall that bagging involves creating multiple copies of the original training

data set using the bootstrap, fitting a separate decision tree to each copy, and

then combining all of the trees in order to create a single predictive model

 Notably, each tree is built on a bootstrap data set, independent of the other trees

 Boosting works in a similar way, except that the trees are grown sequentially:

each tree is grown using information from previously grown trees

 Boosting does not involve bootstrap sampling; instead each tree is fit on a modified version

of the original data set

42

https://dafriedman97.github.io/mlbook/content/c6/s1/boosting.html

Boosting algorithm for regression trees

43

What is the idea behind this procedure?

 Unlike fitting a single large decision tree to the data, which amounts to fitting

the data hard and potentially overfitting, the boosting approach instead learns

slowly

 Given the current model, we fit a decision tree to the residuals from the model.

We then add this new decision tree into the fitted function in order to update

the residuals

 Each of these trees can be rather small, with just a few terminal nodes,

determined by the parameter 𝑑 in the algorithm

 By fitting small trees to the residuals, we slowly improve መ𝑓 in areas where it

does not perform well. The shrinkage parameter 𝜆 slows the process down even

further, allowing more and different shaped trees to attack the residuals

44

Boosting for classification

 Boosting has three tuning parameters

 The number of trees 𝐵 (Choose by CV)

 The shrinkage parameter 𝜆 (Typical values are 0.01 or 0.001)

 The number 𝑑 of splits in each tree (Often 𝑑 = 1 works well, in which case each

tree is a stump, consisting of a single split and resulting in an additive model)

 Boosting for classification is similar in spirit to boosting for regression, but is a

bit more complex. We will not go into detail here, nor do we in the text book

 Can learn about the details in Elements of Statistical Learning, chapter 10

 The Python package XGboost (gradient boosted models) handles a variety of

regression and classification problems using other tools besides decision tree

45

https://xgboost.readthedocs.io/en/latest/

Gene expression data continued

46

Details of previous figure

 Results from performing boosting and random forests on the fifteen-class gene

expression data set in order to predict cancer versus normal

 The test error is displayed as a function of the number of trees. For the two

boosted models, 𝜆 = 0.01. Depth-1 trees slightly outperform depth-2 trees, and

both outperform the random forest, although the standard errors are around

0.02, making none of these differences significant

 The test error rate for a single tree is 24% (Binary classification)

 In boosting, because the growth of a particular tree takes into account the

other trees that have already been grown, smaller trees are typically

sufficient. Using smaller trees can aid in interpretability as well; for

instance, using stumps leads to an additive model

47

Ensemble method - Bayesian Additive Regression Trees (BART)

 BART is related to the bagging and boosting approaches: each tree is

constructed in a random manner as in bagging and random forests, and each

tree tries to capture signal not yet accounted for by the current model, as in

boosting

 The main novelty in BART is the way in which new trees are generated

 Let 𝐾 denote the number of regression trees, and 𝐵 the number of iterations for which the

BART algorithm will be run. The notation መ𝑓𝑘
𝑏(𝑥) represents the prediction at 𝑥 for the 𝑘th

regression tree used in the 𝑏th iteration

 At the end of each iteration, the 𝐾 trees from that iteration will be summed መ𝑓𝑏(𝑥) =
σ𝑘=1
𝐾 መ𝑓𝑘

𝑏(𝑥) for 𝑏 = 1,… , 𝐵

48

Bayesian Additive Regression Trees (BART)

 There are two components to this

perturbation:

1. We may change the structure of

the tree by adding or pruning

branches

2. We may change the prediction in

each terminal node of the tree

 Algorithm 8.3 can be viewed as a

Markov chain Monte Carlo for

fitting the BART model

49

http://hedibert.org/wp-content/uploads/2018/06/BART.pdf

50

Bayesian Additive Regression Trees (BART)

 We typically throw away the first few of these prediction models, since models

obtained in the earlier iterations tend not to provide very good results

 We can let 𝐿 denote the number of burn-in iterations; for instance, we might take 𝐿 = 200.

Then, to obtain a single prediction, we simply take the average after the burn-in iterations,

መ𝑓 𝑥 =
1

𝐵−𝐿
σ𝑏=𝐿+1
𝐵 መ𝑓𝑏 𝑥

 A key element is that in Step 3(a)ii., we do not fit a fresh tree to the current

partial residual: instead, we try to improve the fit to the current partial residual

by slightly modifying the tree obtained in the previous iteration

 This guards against overfitting since it limits how “hard” we fit the data in each

iteration. Furthermore, the individual trees are typically quite small. We limit

the tree size in order to avoid overfitting the data, which would be more likely

to occur if we grew very large trees

51

52

Tuning parameters for BART

 When we apply BART, we must select the number of trees 𝐾, the number

of iterations 𝐵, and the number of burn-in iterations 𝐿. We typically

choose large values for 𝐵 and 𝐾, and a moderate value for 𝐿
 For instance, 𝐾 = 200, 𝐵 = 1,000, and 𝐿 = 100 is a reasonable choice. BART has

been shown to have very impressive out-of-box performance — that is, it performs

well with minimal tuning

53

Variable importance measure

 For bagged/RF regression trees, we

record the total amount that the RSS

is decreased due to splits over a

given predictor, averaged over all 𝐵
trees. A large value indicates an

important predictor

 Similarly, for bagged/RF

classification trees, we add up the

total amount that the Gini index is

decreased by splits over a given

predictor, averaged over all 𝐵 trees

54

Summary

 Decision trees are simple and interpretable models for regression and

classification

 However they are often not competitive with other methods in terms of prediction accuracy

 In bagging, the trees are grown independently on random samples of the

observations. Consequently, the trees tend to be quite similar to each other.

Thus, bagging can get caught in local optima and can fail to thoroughly explore

the model space

 In random forests, the trees are once again grown independently on random

samples of the observations. However, each split on each tree is performed

using a random subset of the features, thereby decorrelating the trees, and

leading to a more thorough exploration of model space relative to bagging

55

Summary

 In boosting, we only use the original data, and do not draw any random

samples. The trees are grown successively, using a “slow” learning approach:

each new tree is fit to the signal that is left over from the earlier trees, and

shrunken down before it is used

 In BART, we once again only make use of the original data, and we grow the

trees successively. However, each tree is perturbed in order to avoid local

minima and achieve a more thorough exploration of the model space

56

Appendix

57

The tree training algorithm

 ID3 (Iterative Dichotomiser 3) was developed in 1986 by Ross Quinlan. The

algorithm creates a multiway tree, finding for each node (i.e. in a greedy

manner) the categorical feature that will yield the largest information gain for

categorical targets. Trees are grown to their maximum size and then a pruning

step is usually applied to improve the ability of the tree to generalise to unseen

data

 C4.5 is the successor to ID3 and removed the restriction that features must be

categorical by dynamically defining a discrete attribute (based on numerical

variables) that partitions the continuous attribute value into a discrete set of

intervals. C4.5 converts the trained trees (i.e. the output of the ID3 algorithm)

into sets of if-then rules. These accuracy of each rule is then evaluated to

determine the order in which they should be applied. Pruning is done by

removing a rule’s precondition if the accuracy of the rule improves without it
58

https://scikit-learn.org/stable/modules/tree.html#tree-algorithms-id3-c4-5-c5-0-and-cart
https://en.wikipedia.org/wiki/ID3_algorithm

The tree training algorithm

 C5.0 is Quinlan’s latest version release under a proprietary license. It uses less

memory and builds smaller rulesets than C4.5 while being more accurate

 CART (Classification and Regression Trees) is very similar to C4.5, but it

differs in that it supports numerical target variables (regression) and does not

compute rule sets. CART constructs binary trees using the feature and

threshold that yield the largest information gain at each node

 scikit-learn uses an optimised version of the CART algorithm; however, scikit-

learn implementation does not support categorical variables for now

 Scikit-learn’s default max _𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 𝑛_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠

59

https://en.wikipedia.org/wiki/Predictive_analytics#Classification_and_regression_trees_.28CART.29

Other ensemble methods

 Extra-trees

 In extremely randomized trees, randomness goes one step further in the way splits are

computed

 As in random forests, a random subset of candidate features is used, but instead of looking

for the most discriminative thresholds, thresholds are drawn at random for each candidate

feature and the best of these randomly-generated thresholds is picked as the splitting rule

 This usually allows to reduce the variance of the model a bit more, at the expense of a

slightly greater increase in bias

 AdaBoost

 Scikit-learn’s implementation

 https://scikit-learn.org/stable/modules/ensemble.html#adaboost

60

https://scikit-learn.org/stable/modules/ensemble.html#extremely-randomized-trees
https://dafriedman97.github.io/mlbook/content/c6/s1/boosting.html#adaboost-for-binary-classification
https://scikit-learn.org/stable/modules/ensemble.html#adaboost

AdaBoost

61

https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/

https://dafriedman97.github.io/mlbook/content/c6/s1/boosting.html#adaboost-for-binary-classification
https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/

Stacking

62

https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/

http://rasbt.github.io/mlxtend/user_guide/classifier/StackingClassifier/
https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/

Other ensemble methods

 Histogram-Based Gradient Boosting

 These histogram-based estimators can be orders of magnitude faster

 Popular framework

 XGBoost

 CatBoost

 LightGBM

 https://github.com/Menelau/DESlib

63

https://scikit-learn.org/stable/modules/ensemble.html#histogram-based-gradient-boosting
https://xgboost.readthedocs.io/en/stable/
https://catboost.ai/
https://lightgbm.readthedocs.io/en/latest/
https://github.com/Menelau/DESlib

ESL 10.9 – Boosting Trees

64

Reference

 ESL Chapter 9,10,15,16

65

