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Tree-based Methods

 Here we describe tree-based methods for regression and classification

 These involve firstly stratifying or segmenting the predictor space into a number of simple 

regions

 And use the mean or the mode response value for the training observations in the region to 

which it belongs for inference

 Since the set of splitting rules used to segment the predictor space can be 

summarized in a tree, these types of approaches are known as decision-tree 

methods
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Pros and Cons

 Tree-based methods are simple and useful for interpretation

 However they typically are not competitive with the best supervised learning 

approaches in terms of prediction accuracy

 Hence we also discuss bagging, random forests, boosting and Bayesian 

additive regression trees. These methods grow multiple trees which are then 

combined to yield a single consensus prediction

 Combining a large number of trees can often result in dramatic improvements 

in prediction accuracy, at the expense of some loss interpretation
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Baseball salary data: how would you stratify it?

 Salary is color-coded from low (blue, green) to high (yellow, red)
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Decision tree for these data
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Details of previous figure

 For the Hitters data, a regression tree for predicting the log salary of a baseball 

player, based on the number of years that he has played in the major leagues 

and the number of hits that he made in the previous year

 At a given internal node, the label (of the form 𝑋𝑗 < 𝑡𝑘) indicates the left-hand 

branch emanating from that split, and the right-hand branch corresponds to 

𝑋𝑗 ≥ 𝑡𝑘. For instance, the split at the top of the tree results in two large 

branches. The left-hand branch corresponds to Years< 4.5, and the right-hand 

branch corresponds to Years ≥ 4.5

 The tree has two internal nodes and three terminal nodes, or leaves. The 

number in each leaf is the mean of the response for the observations that fall 

there
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Results

 Overall, the tree stratifies or segments the players into three regions of 

predictor space: 𝑅1 = { 𝑋 | 𝑌𝑒𝑎𝑟𝑠 < 4.5 }, 𝑅2 = { 𝑋 | 𝑌𝑒𝑎𝑟𝑠 ≥ 4.5, 𝐻𝑖𝑡𝑠 <
117.5 } , and 𝑅3 = { 𝑋 |𝑌𝑒𝑎𝑟𝑠 ≥ 4.5, 𝐻𝑖𝑡𝑠 ≥ 117.5 }
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Terminology for Trees

 In keeping with the tree analogy, the regions 𝑅1, 𝑅2, and 𝑅3 are known as 

terminal nodes

 Decision trees are typically drawn upside down, in the sense that the leaves are 

at the bottom of the tree

 The points along the tree where the predictor space is split are referred to as 

internal nodes

 In the hitters tree, the two internal nodes are indicated by the text 𝑌𝑒𝑎𝑟𝑠 <
4.5 and 𝐻𝑖𝑡𝑠 < 117.5
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Interpretation of Results

 Years is the most important factor in determining Salary, and players with less 

experience earn lower salaries than more experienced players

 Given that a player is less experienced, the number of Hits that he made in the 

previous year seems to play little role in his Salary

 But among players who have been in the major leagues for five or more years, 

the number of Hits made in the previous year does affect Salary, and players 

who made more Hits last year tend to have higher salaries

 Surely an over-simplification, but compared to a regression model, it is easy to 

display, interpret and explain
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Details of the tree-building process

1. We divide the predictor space — that is, the set of possible values for 

𝑋1, 𝑋2, … , 𝑋𝑝— into 𝐽 distinct and non-overlapping regions, 𝑅1, 𝑅2, … , 𝑅𝐽

2. For every observation that falls into the region 𝑅𝑗 , we make the same 

prediction, which is simply the mean of the response values for the training 

observations in 𝑅𝑗
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More details of the tree-building process

 In theory, the regions could have any shape. However, we choose to divide the 

predictor space into high-dimensional rectangles, or boxes, for simplicity and 

for ease of interpretation of the resulting predictive model

 The goal is to find boxes 𝑅1, 𝑅2, … , 𝑅𝐽 that minimize the RSS, given by

෍

𝑗=1

𝐽

෍

𝑖∈𝑅𝑗

(𝑦𝑖 − ො𝑦𝑅𝑗)
2

ො𝑦𝑅𝑗 is the mean response for the training observations within the 𝑗th box
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More details of the tree-building process

 Unfortunately, it is computationally infeasible to consider every possible 

partition of the feature space into 𝐽 boxes

 For this reason, we take a top-down, greedy approach that is known as 

recursive binary splitting

 The approach is top-down because it begins at the top of the tree and then 

successively splits the predictor space; each split is indicated via two new 

branches further down on the tree

 It is greedy because at each step of the tree-building process, the best split is 

made at that particular step, rather than looking ahead and picking a split that 

will lead to a better tree in some future step
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Details— Continued

 We first select the predictor 𝑋𝑗 and the cutpoint 𝑠 such that splitting the 

predictor space into the regions {𝑋|𝑋𝑗 < 𝑠 } and {𝑋|𝑋𝑗 ≥ 𝑠 } leads to the 

greatest possible reduction in RSS (choosing 𝑗 and 𝑠 to minimize)

෍

𝑖:𝑥𝑖𝜖𝑅1(𝑗,𝑠)

(𝑦𝑖 − ො𝑦𝑅1)
2+ ෍

𝑖:𝑥𝑖𝜖𝑅2(𝑗,𝑠)

(𝑦𝑖 − ො𝑦𝑅2)
2

 Next, we looking for the best predictor and best cutpoint in order to split the 

data further so as to minimize the RSS within each of the resulting regions

 Instead of splitting the entire predictor space, we split one of the two previously identified 

regions. We now have three regions

 Again, we look to split one of these three regions further, so as to minimize the RSS. The 

process continues until a stopping criterion is reached; for instance, we may continue until 

no region contains more than five observations
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Predictions

 We predict the response for 

a given test observation 

using the mean of the 

training observations in the 

region to which that test 

observation belongs

 A five-region example of 

this approach is shown
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Details of previous figure

 Top Left: A partition of two-dimensional feature space that could not result 

from recursive binary splitting

 Top Right: The output of recursive binary splitting on a two-dimensional 

example

 Bottom Left: A tree corresponding to the partition in the top right panel

 Bottom Right: A perspective plot of the prediction surface corresponding to 

that tree
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Regulization

 The process described above may produce good predictions on the training set, 

but is likely to overfit the data, leading to poor test set performance

 A simple way to limit a tree’s size is to directly regulate its depth, the size of its 

terminal nodes (training observation belongs to them), or both
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Pruning a tree

 A smaller tree with fewer splits (that is, fewer regions 𝑅1, 𝑅2, … , 𝑅𝐽) might lead 

to lower variance and better interpretation at the cost of a little bias

 One possible alternative to the process described above is to grow the tree only so long as 

the decrease in the RSS due to each split exceeds some (high) threshold

 This strategy will result in smaller trees, but is too short-sighted: a seemingly worthless 

split early on in the tree might be followed by a very good split — that is, a split that leads 

to a large reduction in RSS later on
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Pruning a tree— continued

 A better strategy is to grow a very large tree 𝑇0, and then prune it back in order 

to obtain a subtree

 Cost complexity pruning — also known as weakest link pruning — is used to 

do this

 We consider a sequence of trees indexed by a nonnegative tuning parameter 𝛼. 

For each value of α there corresponds a subtree 𝑇 ⊂ 𝑇0 such that

෍

𝑚=1

|𝑇|

෍

𝑖:𝑥𝑖∈𝑅𝑚

(𝑦𝑖 − ො𝑦𝑅𝑚)
2 + 𝛼|𝑇|

is as small as possible. Here |𝑇| indicates the number of terminal nodes of the tree 𝑇, 𝑅𝑚 is 

the rectangle (i.e. the subset of predictor space) corresponding to the 𝑚th terminal node, and 

ො𝑦𝑅𝑚 is the mean of the training observations in 𝑅𝑚
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Choosing the best subtree

 The tuning parameter α controls a trade-off between the subtree’s complexity 

and its fit to the training data

 Note that similar formulation was used in order to control the complexity 

of a linear model when we discuss lasso

 It turns out that as we increase α from zero in (8.4), branches get pruned from 

the tree in a nested and predictable fashion!

 We select an optimal value ො𝛼 using cross-validation

 We then return to the full data set and obtain the subtree corresponding to ො𝛼
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Baseball example continued

 First, we randomly divided the data set in half, yielding 132 observations in the 

training set and 131 observations in the test set

 We then built a large regression tree on the training data and varied 𝛼 in order 

to create subtrees with different numbers of terminal nodes

 Finally, we performed six-fold cross-validation in order to estimate the cross-

validated MSE of the trees as a function of 𝛼
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Baseball example continued
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Baseball example continued
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Classification Trees

 Very similar to a regression tree, except that it is used to predict a qualitative 

response rather than a quantitative one

 For a classification tree, we predict that each observation belongs to the most 

commonly occurring class of training observations in the region to which it 

belongs

 Just as in the regression setting, we use recursive binary splitting to grow a 

classification tree

 In the classification setting, RSS cannot be used as a criterion for making the 

binary splits
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Details of classification trees

 A natural alternative to RSS is the classification error rate. In our case, this is 

simply the fraction of the training observations in that region that do not 

belong to the most common class
𝐸 = 1 −max

𝑘
( Ƹ𝑝𝑚𝑘)

Here Ƹ𝑝𝑚𝑘 represents the proportion of training observations in the 𝑚th region that are from 

the 𝑘th class

 However classification error is not sufficiently sensitive for tree-growing, and 

in practice two other measures are preferable
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Gini index and Deviance

 The Gini index is defined by

𝐺 =෍

𝑖=1

𝐾

Ƹ𝑝𝑚𝑘(1 − Ƹ𝑝𝑚𝑘)

 A measure of total variance across the 𝐾 classes. The Gini index takes on a small value if 

all of the Ƹ𝑝𝑚𝑘’s are close to zero or one

 For this reason the Gini index is referred to as a measure of node purity — a small value 

indicates that a node contains predominantly observations from a single class

 An alternative to the Gini index is cross-entropy, given by

𝐷 = −෍

𝑘=1

𝐾

Ƹ𝑝𝑚𝑘 log Ƹ𝑝𝑚𝑘

 It turns out that the Gini index and the cross-entropy are very similar 

numerically (differentiable)
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Example: heart data

 These data contain a binary outcome HD for 303 patients who presented with 

chest pain

 An outcome value of Yes indicates the presence of heart disease based on an 

angiographic test, while No means no heart disease

 There are 13 predictors including Age, Sex, Chol (a cholesterol measurement), 

and other heart and lung function measurements

 Cross-validation yields a tree with six terminal nodes. See next figure
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 There are some qualitative predictors

 Some of the splits yield two terminal nodes 

that have the same predicted value

 Though the split 𝑅𝑒𝑠𝑡𝐸𝐶𝐺 < 1 does not reduce the 

classification error, it improves the Gini index and 

the entropy, which are more sensitive to node purity

(weighted by the observation in each subtree)
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Trees Versus Linear Models

 Regression tree assume a model 

of a form

𝑓 𝑋 = ෍

𝑚=1

𝑀

𝑐𝑚1(𝑋∈𝑅𝑚)

 Top Row: True linear boundary; 

Bottom row: true non-linear 

boundary

 Left column: linear model; 

Right column: tree-based 

model
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Advantages and Disadvantages of Trees

 Pros

 Trees are very easy to explain to people. In fact, they are even easier to explain than linear 

regression!

 Some people believe that decision trees more closely mirror human decision-making than 

do the regression and classification approaches seen in previous chapters

 Trees can be displayed graphically, and are easily interpreted even by a non-expert 

(especially if they are small)

 Trees can easily handle qualitative predictors without the need to create dummy variables

 Cons

 Unfortunately, trees generally do not have the same level of predictive accuracy as some of 

the other regression and classification approaches seen in this book

 However, by aggregating many decision trees, the predictive performance of 

trees can be substantially improved. We introduce these concepts next
30
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Ensemble method - Bagging

 An ensemble method is an approach that combines many simple “building 

block” models in order to obtain a single and potentially very powerful model. 

These simple building block models are sometimes known as weak learners, 

since they may lead to mediocre predictions on their own

 Bootstrap aggregation, or bagging, is a general-purpose procedure for reducing 

the variance of a statistical learning method; we introduce it here because it is 

particularly useful and frequently used in the context of decision trees

 Recall that given a set of 𝑛 independent observations 𝑍1, … , 𝑍𝑛, each with 

variance 𝜎2, the variance of the mean ҧ𝑍 of the observations is given by 𝜎2/𝑛

 In other words, averaging a set of observations reduces variance. Of course, 

this is not practical because we generally do not have access to multiple 

training sets
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Bagging— continued

 Instead, we can bootstrap, by taking repeated samples from the (single) training 

data set

 In this approach we generate 𝐵 different bootstrapped training data sets. We 

then train our method on the 𝑏th bootstrapped training set in order to get 
መ𝑓∗𝑏(𝑥), the prediction at a point 𝑥. We then average all the predictions to 

obtain

መ𝑓𝑏𝑎𝑔 𝑥 =
1

𝐵
෍

𝑏=1

𝐵

መ𝑓∗𝑏 𝑥

 This is called bagging
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Bagging classification trees

 The above prescription applied to regression trees

 These trees are grown deep, and are not pruned. Hence each individual tree has high 

variance, but low bias

 For classification trees: for each test observation, we record the class predicted 

by each of the 𝐵 trees, and take a majority vote: the overall prediction is the 

most commonly occurring class among the 𝐵 predictions
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Bagging the heart data
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Details of previous figure

 Bagging and random forest results for the Heart data.

 The test error (black and orange) is shown as a function of 𝐵, the number of bootstrapped 

training sets used

 Random forests were applied with 𝑚 = 𝑝

 The dashed line indicates the test error resulting from a single classification tree

 The green and blue traces show the OOB error, which in this case is considerably lower
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Out-of-Bag Error Estimation

 It turns out that there is a very straightforward way to estimate the test error of 

a bagged model

 Recall that the key to bagging is that trees are repeatedly fit to bootstrapped 

subsets of the observations. One can show that on average, each bagged tree 

makes use of around two-thirds of the observations

 The remaining one-third of the observations not used to fit a given bagged tree 

are referred to as the out-of-bag (OOB) observations

 We can predict the response for the 𝑖th observation using each of the trees in 

which that observation was OOB. This will yield around 𝐵/3 predictions for 

the 𝑖th observation, which we average (or vote)

 This estimate is essentially the LOO cross-validation error for bagging, if 𝐵 is 

large
36



Ensemble method - Random Forests

 Random forests provide an improvement over bagged trees by way of a small 

tweak that decorrelates the trees. This reduces the variance when we average the 

trees

 As in bagging, we build a number of decision trees on bootstrapped training samples

 But when building these decision trees, each time a split in a tree is considered, a random 

selection of 𝑚 predictors is chosen as split candidates from the full set of 𝑝 predictors

 The split is allowed to use only one of those 𝑚 predictors

 A fresh selection of 𝑚 predictors is taken at each split, and typically we choose 𝑚 ≈ 𝑝 —

that is, the number of predictors considered at each split is approximately equal to the square 

root of the total number of predictors (4 out of the 13 for the Heart data)
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Ensemble method - Random Forests

 Suppose that there is one very strong predictor in the data set, along with 

a number of other moderately strong predictors. Then in the collection of 

bagged trees, most or all of the trees will use this strong predictor in the 

top split 

 Consequently, all of the bagged trees will look quite similar to each other

 Averaging many highly correlated quantities does not lead to as large of a reduction in 

variance as averaging many uncorrelated quantities

 Random forests overcome this problem by forcing each split to consider only a subset 

of the predictors

 Using a small value of m in building a random forest will typically be helpful when we 

have a large number of correlated predictors
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Example: gene expression data

 We applied random forests to a high-dimensional biological data set consisting of 

expression measurements of 4,718 genes measured on tissue samples from 349 

patients

 There are around 20,000 genes in humans, and individual genes have different levels 

of activity, or expression, in particular cells, tissues, and biological conditions

 Each of the patient samples has a qualitative label with 15 different levels: either 

normal or one of 14 different types of cancer

 We use random forests to predict cancer type based on the 500 genes that have the 

largest variance in the training set

 We randomly divided the observations into a training and a test set, and applied 

random forests to the training set for three different values of the number of splitting 

variables 𝑚
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Results: gene expression data

 As with bagging, random forests will not overfit if we increase 𝐵, so in 

practice we use a value of 𝐵 sufficiently large for the error rate to have 

settled down

40



Details of previous figure

 Results from random forests for the fifteen-class gene expression data set with 

𝑝 = 500 predictors

 The test error is displayed as a function of the number of trees. Each colored 

line corresponds to a different value of 𝑚, the number of predictors available 

for splitting at each interior tree node

 Random forests (𝑚 < 𝑝) lead to a slight improvement over bagging (𝑚 =
𝑝). A single classification tree has an error rate of 45.7%
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Ensemble method - Boosting

 Like bagging, boosting is a general approach that can be applied to many 

statistical learning methods for regression or classification

 Recall that bagging involves creating multiple copies of the original training 

data set using the bootstrap, fitting a separate decision tree to each copy, and 

then combining all of the trees in order to create a single predictive model

 Notably, each tree is built on a bootstrap data set, independent of the other trees

 Boosting works in a similar way, except that the trees are grown sequentially:

each tree is grown using information from previously grown trees

 Boosting does not involve bootstrap sampling; instead each tree is fit on a modified version 

of the original data set
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Boosting algorithm for regression trees
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What is the idea behind this procedure?

 Unlike fitting a single large decision tree to the data, which amounts to fitting 

the data hard and potentially overfitting, the boosting approach instead learns 

slowly

 Given the current model, we fit a decision tree to the residuals from the model. 

We then add this new decision tree into the fitted function in order to update 

the residuals

 Each of these trees can be rather small, with just a few terminal nodes, 

determined by the parameter 𝑑 in the algorithm

 By fitting small trees to the residuals, we slowly improve መ𝑓 in areas where it 

does not perform well. The shrinkage parameter 𝜆 slows the process down even 

further, allowing more and different shaped trees to attack the residuals
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Boosting for classification

 Boosting has three tuning parameters

 The number of trees 𝐵 (Choose by CV)

 The shrinkage parameter 𝜆 (Typical values are 0.01 or 0.001)

 The number 𝑑 of splits in each tree (Often 𝑑 = 1 works well, in which case each

tree is a stump, consisting of a single split and resulting in an additive model) 

 Boosting for classification is similar in spirit to boosting for regression, but is a 

bit more complex. We will not go into detail here, nor do we in the text book

 Can learn about the details in Elements of Statistical Learning, chapter 10

 The Python package XGboost (gradient boosted models) handles a variety of 

regression and classification problems using other tools besides decision tree
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Gene expression data continued
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Details of previous figure

 Results from performing boosting and random forests on the fifteen-class gene 

expression data set in order to predict cancer versus normal

 The test error is displayed as a function of the number of trees. For the two 

boosted models, 𝜆 = 0.01. Depth-1 trees slightly outperform depth-2 trees, and 

both outperform the random forest, although the standard errors are around 

0.02, making none of these differences significant

 The test error rate for a single tree is 24% (Binary classification)

 In boosting, because the growth of a particular tree takes into account the 

other trees that have already been grown, smaller trees are typically 

sufficient. Using smaller trees can aid in interpretability as well; for 

instance, using stumps leads to an additive model
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Ensemble method - Bayesian Additive Regression Trees (BART)

 BART is related to the bagging and boosting approaches: each tree is 

constructed in a random manner as in bagging and random forests, and each 

tree tries to capture signal not yet accounted for by the current model, as in 

boosting 

 The main novelty in BART is the way in which new trees are generated

 Let 𝐾 denote the number of regression trees, and 𝐵 the number of iterations for which the 

BART algorithm will be run. The notation መ𝑓𝑘
𝑏(𝑥) represents the prediction at 𝑥 for the 𝑘th 

regression tree used in the 𝑏th iteration

 At the end of each iteration, the 𝐾 trees from that iteration will be summed መ𝑓𝑏(𝑥) =
σ𝑘=1
𝐾 መ𝑓𝑘

𝑏(𝑥) for 𝑏 = 1,… , 𝐵
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Bayesian Additive Regression Trees (BART)

 There are two components to this 

perturbation:

1. We may change the structure of 

the tree by adding or pruning 

branches

2. We may change the prediction in 

each terminal node of the tree

 Algorithm 8.3 can be viewed as a 

Markov chain Monte Carlo for 

fitting the BART model

49

http://hedibert.org/wp-content/uploads/2018/06/BART.pdf


50



Bayesian Additive Regression Trees (BART)

 We typically throw away the first few of these prediction models, since models 

obtained in the earlier iterations tend not to provide very good results

 We can let 𝐿 denote the number of burn-in iterations; for instance, we might take 𝐿 = 200. 

Then, to obtain a single prediction, we simply take the average after the burn-in iterations, 

መ𝑓 𝑥 =
1

𝐵−𝐿
σ𝑏=𝐿+1
𝐵 መ𝑓𝑏 𝑥

 A key element is that in Step 3(a)ii., we do not fit a fresh tree to the current 

partial residual: instead, we try to improve the fit to the current partial residual 

by slightly modifying the tree obtained in the previous iteration

 This guards against overfitting since it limits how “hard” we fit the data in each 

iteration. Furthermore, the individual trees are typically quite small. We limit 

the tree size in order to avoid overfitting the data, which would be more likely 

to occur if we grew very large trees
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Tuning parameters for BART

 When we apply BART, we must select the number of trees 𝐾, the number 

of iterations 𝐵, and the number of burn-in iterations 𝐿. We typically 

choose large values for 𝐵 and 𝐾, and a moderate value for 𝐿
 For instance, 𝐾 = 200, 𝐵 = 1,000, and 𝐿 = 100 is a reasonable choice. BART has 

been shown to have very impressive out-of-box performance — that is, it performs 

well with minimal tuning
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Variable importance measure

 For bagged/RF regression trees, we 

record the total amount that the RSS 

is decreased due to splits over a 

given predictor, averaged over all 𝐵
trees. A large value indicates an 

important predictor

 Similarly, for bagged/RF 

classification trees, we add up the 

total amount that the Gini index is 

decreased by splits over a given 

predictor, averaged over all 𝐵 trees

54



Summary

 Decision trees are simple and interpretable models for regression and 

classification

 However they are often not competitive with other methods in terms of prediction accuracy

 In bagging, the trees are grown independently on random samples of the 

observations. Consequently, the trees tend to be quite similar to each other. 

Thus, bagging can get caught in local optima and can fail to thoroughly explore 

the model space

 In random forests, the trees are once again grown independently on random 

samples of the observations. However, each split on each tree is performed 

using a random subset of the features, thereby decorrelating the trees, and 

leading to a more thorough exploration of model space relative to bagging
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Summary

 In boosting, we only use the original data, and do not draw any random 

samples. The trees are grown successively, using a “slow” learning approach: 

each new tree is fit to the signal that is left over from the earlier trees, and 

shrunken down before it is used

 In BART, we once again only make use of the original data, and we grow the 

trees successively. However, each tree is perturbed in order to avoid local 

minima and achieve a more thorough exploration of the model space
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Appendix
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The tree training algorithm

 ID3 (Iterative Dichotomiser 3) was developed in 1986 by Ross Quinlan. The 

algorithm creates a multiway tree, finding for each node (i.e. in a greedy 

manner) the categorical feature that will yield the largest information gain for 

categorical targets. Trees are grown to their maximum size and then a pruning 

step is usually applied to improve the ability of the tree to generalise to unseen 

data

 C4.5 is the successor to ID3 and removed the restriction that features must be 

categorical by dynamically defining a discrete attribute (based on numerical 

variables) that partitions the continuous attribute value into a discrete set of 

intervals. C4.5 converts the trained trees (i.e. the output of the ID3 algorithm) 

into sets of if-then rules. These accuracy of each rule is then evaluated to 

determine the order in which they should be applied. Pruning is done by 

removing a rule’s precondition if the accuracy of the rule improves without it
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https://scikit-learn.org/stable/modules/tree.html#tree-algorithms-id3-c4-5-c5-0-and-cart
https://en.wikipedia.org/wiki/ID3_algorithm


The tree training algorithm

 C5.0 is Quinlan’s latest version release under a proprietary license. It uses less 

memory and builds smaller rulesets than C4.5 while being more accurate

 CART (Classification and Regression Trees) is very similar to C4.5, but it 

differs in that it supports numerical target variables (regression) and does not 

compute rule sets. CART constructs binary trees using the feature and 

threshold that yield the largest information gain at each node

 scikit-learn uses an optimised version of the CART algorithm; however, scikit-

learn implementation does not support categorical variables for now

 Scikit-learn’s default max _𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 𝑛_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠
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https://en.wikipedia.org/wiki/Predictive_analytics#Classification_and_regression_trees_.28CART.29


Other ensemble methods

 Extra-trees

 In extremely randomized trees, randomness goes one step further in the way splits are 

computed 

 As in random forests, a random subset of candidate features is used, but instead of looking 

for the most discriminative thresholds, thresholds are drawn at random for each candidate 

feature and the best of these randomly-generated thresholds is picked as the splitting rule

 This usually allows to reduce the variance of the model a bit more, at the expense of a 

slightly greater increase in bias

 AdaBoost

 Scikit-learn’s implementation

 https://scikit-learn.org/stable/modules/ensemble.html#adaboost
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https://scikit-learn.org/stable/modules/ensemble.html#extremely-randomized-trees
https://dafriedman97.github.io/mlbook/content/c6/s1/boosting.html#adaboost-for-binary-classification
https://scikit-learn.org/stable/modules/ensemble.html#adaboost


AdaBoost
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https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/

https://dafriedman97.github.io/mlbook/content/c6/s1/boosting.html#adaboost-for-binary-classification
https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/


Stacking
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https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/

http://rasbt.github.io/mlxtend/user_guide/classifier/StackingClassifier/
https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/


Other ensemble methods

 Histogram-Based Gradient Boosting

 These histogram-based estimators can be orders of magnitude faster

 Popular framework

 XGBoost

 CatBoost

 LightGBM

 https://github.com/Menelau/DESlib
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https://scikit-learn.org/stable/modules/ensemble.html#histogram-based-gradient-boosting
https://xgboost.readthedocs.io/en/stable/
https://catboost.ai/
https://lightgbm.readthedocs.io/en/latest/
https://github.com/Menelau/DESlib


ESL 10.9 – Boosting Trees
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